329 research outputs found

    Differences between the genomes of lymphoblastoid cell lines and blood-derived samples.

    Get PDF
    Lymphoblastoid cell lines (LCLs) represent a convenient research tool for expanding the amount of biologic material available from an individual. LCLs are commonly used as reference materials, most notably from the Genome in a Bottle Consortium. However, the question remains how faithfully LCL-derived genome assemblies represent the germline genome of the donor individual as compared to the genome assemblies derived from peripheral blood mononuclear cells. We present an in-depth comparison of a large collection of LCL- and peripheral blood mononuclear cell-derived genomes in terms of distributions of coverage and copy number alterations. We found significant differences in the depth of coverage and copy number calls, which may be driven by differential replication timing. Importantly, these copy number changes preferentially affect regions closer to genes and with higher GC content. This suggests that genomic studies based on LCLs may display locus-specific biases, and that conclusions based on analysis of depth of coverage and copy number variation may require further scrutiny

    The Human Sense of Smell: Are We Better Than We Think?

    Get PDF
    Gordon Shepherd challenges the notion - based on genetic evidence - that olfaction is less well developed in humans as compared to other mammal

    Crowdsourcing the corpasome

    Get PDF
    The suffix -ome conveys β€œcomprehensiveness” in some way. The idea of the Corpasome started half-jokingly, acknowledging the efforts to sequence five members of my family. After the unexpected response from many scientists from around the world, it has become clear how useful this approach could be for understanding the genomic information contained in our personal genomics tests

    A Third Approach to Gene Prediction Suggests Thousands of Additional Human Transcribed Regions

    Get PDF
    The identification and characterization of the complete ensemble of genes is a main goal of deciphering the digital information stored in the human genome. Many algorithms for computational gene prediction have been described, ultimately derived from two basic concepts: (1) modeling gene structure and (2) recognizing sequence similarity. Successful hybrid methods combining these two concepts have also been developed. We present a third orthogonal approach to gene prediction, based on detecting the genomic signatures of transcription, accumulated over evolutionary time. We discuss four algorithms based on this third concept: Greens and CHOWDER, which quantify mutational strand biases caused by transcription-coupled DNA repair, and ROAST and PASTA, which are based on strand-specific selection against polyadenylation signals. We combined these algorithms into an integrated method called FEAST, which we used to predict the location and orientation of thousands of putative transcription units not overlapping known genes. Many of the newly predicted transcriptional units do not appear to code for proteins. The new algorithms are particularly apt at detecting genes with long introns and lacking sequence conservation. They therefore complement existing gene prediction methods and will help identify functional transcripts within many apparent β€œgenomic deserts.

    Genomic complexity of the variable region-containing chitin-binding proteins in amphioxus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The variable region-containing chitin-binding proteins (VCBPs) are found in protochordates and consist of two tandem immunoglobulin variable (V)-type domains and a chitin-binding domain. We previously have shown that these polymorphic genes, which primarily are expressed in the gut, exhibit characteristics of immune genes. In this report, we describe VCBP genomic organization and characterize adjacent and intervening genetic features which may influence both their polymorphism and complex transcriptional repertoire.</p> <p>Results</p> <p>VCBP genes 1, 2, 4, and 5 are encoded in a single contiguous gene-rich chromosomal region and VCBP3 is encoded in a separate locus. The VCBPs exhibit extensive haplotype variation, including copy number variation (CNV), indel polymorphism and a markedly elevated variation in repeat type and density. In at least one haplotype, inverted repeats occur more frequently than elsewhere in the genome. Multi-animal cDNA screening, as well as transcriptional profilingusing a novel transfection system, suggests that haplotype-specific transcriptional variants may contribute to VCBP genetic diversity.</p> <p>Conclusion</p> <p>The availability of the <it>Branchiostoma floridae </it>genome (Joint Genome Institute, Brafl1), along with BAC and PAC screening and sequencing described here, reveal that the relatively limited number of VCBP genes present in the amphioxus genome exhibit exceptionally high haplotype variation. These VCBP haplotypes contribute a diverse pool of allelic variants, which includes gene copy number variation, pseudogenes, and other polymorphisms, while contributing secondary effects on gene transcription as well.</p

    Genomic architecture of inflammatory bowel disease in five families with multiple affected individuals.

    Full text link
    Currently, the best clinical predictor for inflammatory bowel disease (IBD) is family history. Over 163 sequence variants have been associated with IBD in genome-wide association studies, but they have weak effects and explain only a fraction of the observed heritability. It is expected that additional variants contribute to the genomic architecture of IBD, possibly including rare variants with effect sizes larger than the identified common variants. Here we applied a family study design and sequenced 38 individuals from five families, under the hypothesis that families with multiple IBD-affected individuals harbor one or more risk variants that (i) are shared among affected family members, (ii) are rare and (iii) have substantial effect on disease development. Our analysis revealed not only novel candidate risk variants but also high polygenic risk scores for common known risk variants in four out of the five families. Functional analysis of our top novel variant in the remaining family, a rare missense mutation in the ubiquitin ligase TRIM11, suggests that it leads to increased nuclear factor of kappa light chain enhancer in B-cells (NF-ΞΊB) signaling. We conclude that an accumulation of common weak-effect variants accounts for the high incidence of IBD in most, but not all families we analyzed and that a family study design can identify novel rare variants conferring risk for IBD with potentially large effect size, such as the TRIM11 p.H414Y mutation

    Pattern of the Divergence of Olfactory Receptor Genes during Tetrapod Evolution

    Get PDF
    The olfactory receptor (OR) multigene family is responsible for the sense of smell in vertebrate species. OR genes are scattered widely in our chromosomes and constitute one of the largest gene families in eutherian genomes. Some previous studies revealed that eutherian OR genes diverged mainly during early mammalian evolution. However, the exact period when, and the ecological reason why eutherian ORs strongly diverged has remained unclear. In this study, I performed a strict data mining effort for marsupial opossum OR sequences and bootstrap analyses to estimate the periods of chromosomal migrations and gene duplications of OR genes during tetrapod evolution. The results indicate that chromosomal migrations occurred mainly during early vertebrate evolution before the monotreme-placental split, and that gene duplications occurred mainly during early mammalian evolution between the bird-mammal split and marsupial-placental split, coinciding with the reduction of opsin genes in primitive mammals. It could be thought that the previous chromosomal dispersal allowed the OR genes to subsequently expand easily, and the nocturnal adaptation of early mammals might have triggered the OR gene expansion

    Evaluation of the effect of prospective biomarker testing on progression-free survival in diffuse large B-cell lymphoma.

    Get PDF
    Novel treatment regimens combining chemotherapy with targeted agents are being developed for diffuse large B-cell lymphoma (DLBCL). These regimens are expected to show efficacy in biomarker-defined..
    • …
    corecore